現象数理学・数理工学
数理モデルを用いて様々な自然現象・社会現象を解析します。
現実の現象は様々な要因が複雑に絡み合って起こりますが,
その中から本質的な特徴や要素を抜き出し,
それを単純化して数学的なモデルを作って研究します。
これを「数理モデル」と言います。
この単純化したモデルから現実の多様な現象を再現できた時,
我々はその現象の本質に迫れたと言えるでしょう。
身の回りのあらゆる現象が研究対象となります。
これまでの卒業研究で取り扱われたものも含めていくつか例を挙げると,
自然現象としては地震・感染症の拡大・音波伝播・細胞分裂・
生態系の個体数進化・葉脈などに現れるフラクタル図形など,
社会現象としては交通渋滞・映画館などの避難誘導・スーパーのレジや
遊園地の待ち行列・金融市場の価格変動などがあります。
数理最適化
数理最適化とは,「莫大な数の選択肢の中から最も適したものを選び出すこと」を言います。
選択肢の数がそれほど多くなければ,全ての場合を調べ尽くすことができますが,
原理的にそれが不可能なほど選択肢の数が多い場合に,どのように
なるべくよい解を探し出すか,ということが問題になります。
効率的に解を探索するアルゴリズムの開発を行います。
数理最適化問題は,社会のありとあらゆる場面で現れます。
工場における生産ライン工程設計,物流における配送計画,
学校におけるクラス分けや時間割作成,
個々の勤務者の休日希望や様々な制約条件を取り入れた勤務表の作成,等々。
卒業研究で培ったノウハウが,
社会に出た後に必ず活躍する場面が来ると断言してよいでしょう。
本研究室で実際に行われた卒業研究のテーマとしては,
巡回セールスマン問題,ナーススケジューリング問題があります。
量子誤り訂正符号の理論
近年,量子力学の原理を利用した量子コンピュータの
実現に向けて研究が盛んに行われています。
0と1という2値だけをとる古典情報に対し,量子情報は
これら2状態を複素数で重ね合わせたような状態で表され,
量子情報を用いた量子コンピュータは通常の古典コンピュータよりも
高速な計算が可能であることが分かっています。
量子コンピュータの実現に向けて,
解決しなければならない大きな問題の一つが,誤り耐性です。
量子情報はその伝達の途中でさまざまなノイズによって
破壊されてしまいます。
その誤りを検出し,訂正してくれるのが量子誤り訂正符号です。
これまでに様々なものが考案・研究されていますが,
それらの開発・性能評価のシミュレーションなどの研究を行っています。
統計力学・数理物理学
教員の元々の専攻は理論物理学になります。
宇宙の果てや宇宙の始まり,素粒子のこと,ミクロの世界のこと,
気になることや興味のあることがあったら,なんでも雑談しに来て下さい。
もちろん,卒業研究のテーマにすることも可能です。